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A NUMERICAL METHOD FOR

UNSTEADY AERODYNAMICS VIA ACOUSTICS

STEVE HODGE*

Abstract. Formal solutions to the wave equation may be conveniently described within the

framework of generalized function theory. Here generalized function theory gives a formulation and

formal solution of a wave equation describing oscillation of a fiat plate from which a numerical method

may be derived.

Summary. Wave equations describe vibrations and spatial perturbations ("waves")
of physical terms away from certain ambient terms. In acoustics vibration terms are

generally described as "sound" though they are of a wider range than audible sound.

In general, think of wave equations as describing any moderately small variation in

space or time. Acoustics and aeronautics parallel in that the governing equations of
linearized compressible aerodynamics and acoustics are the same. The linear acoustic

wave equation for the velocity potential ¢(x, t) is

(1) 02¢ 1 02¢
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where c is the "speed of sound." The nature and scope of the infinite possible solu-

tions to (1) vary enormously. Usually a particular physical situation or other specifies
"initial conditions" or "boundary conditions" which narrow the admissible solutions

down to one. However, there is an enormous gulf between knowing that a unique

solution is there and writing it down with a particular equation or function from

which to calculate. There are many ingenious techniques for bridging this gulf. In

particular, sound generated from physical situations which involve moving objects

may be described by wave equations with "generalized derivatives" and have formal
solutions which involve integrals of generalized functions. Generalized derivatives are

a useful formal method roughly equivalent to a "weak" formulation [1], but with the

benefit of derivative formalism in which the work of integration by parts is automati-

cally incorporated. The generalized functions and derivatives are useful in describing

discontinuous phenomena such as the intrusion of a wing in free space or a "shock"

in flow quantities on the surface of the wing [2].

In thin airfoil theory the boundary conditions are specified on the mean chord

surface [3]. In terms of generalized derivatives and linearized momentum equation

p = -po°_.-_t, the wave equation becomes

(2)
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where fmc is the mean chord surface, K is the mean chord surface and wake, vn is the

normal velocity due to thickness and the bars over the derivatives denote generalized

derivatives [4]. This equation is similar to the Ffowcs Williams-Hawkings (FW-K)

(3)
02p 1 _2p
Ot 2 c20x _ - _ [povnlV f[A(f)] + _7 . [pVf_(f)]
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whichisaformalrestatement of the equations of continuity and momentum [5]. Since
pressure is continuous across the wake, this may be rewritten

62p l a2p a
(4) Or.z c.z i)_2 - _ [poV, lVf,,,_.[A(f,,_c)] + V. [ApVf,,_6(fmc)].

Equation (3) has formal solution

10

Here r* is the emission time of a signal received by the observer at time t. Integration

of (5) with respect to l and the identity p a= -p0_b leaw_-s

1 t

Here r*' is the emission time of the signal received at time t'.

Generally (6) is separated into two terms. We are interested in the so called

"lifting" terms (corresponding to aerodynamic lift), namely:

(a),:o_(_,t) = I (_,_s(o).'_ as+ \,'_11- M,I ,.,c .o=0 \_ll- M,I,/,. ,o ._=0

Refer figure I for the following. We assume that the mean chord surface is a fiat

plate moving with uniform velocity in direction shown. Assume that the pressure

is piecewise of the form Ape irt over individual surface panels of the plate. This

corresponds to an unsteady aerodynamic loading. On individual panels /_,i in the
coordinate system shown in figure 1 the individual integrals restated in terms of
normal velocity reduce to

,
rail - M, IJ,., dSdt'

(8)
where v,_ is the velocity in the normal direction and M_ is the Mach number in the

r-direction. Since we are interested in aerodynamic lifting, the observer point will

be on the lifting surface and consequently (8) will be singular on panel on which

the observer lies. Although divergent, a physically correct solution may be extracted

when the integral is considered in the Cauchy principle value sense with corresponding

"lladamard finite part." [6]. After a good choice of coordinate systems, reducing --_ to
Oxa

a limit definition, using a principle value, and Mot of summertime work, the integrals

remarkably reduce to limb-0+ a(ll + I2) where

(9) '1 : h/cc iPt Jr r2 e-/l'r/e { r. '2(1' ] r yl(lr) ])
- sin -1 - sin -1 dr

, ," L_J L_2vT_--=-_-h2J

and

t .., _ c-i,+lc {.sin-' [ y2(r) ] , [ y,(r) ](,0),==h/_**e" f_, ,._ _ [ ::;_-_-h_]-_'"- t :err=_-h_a}d'd`'

(the endpoints ri are the range of r over panel I_,/and quantities in the 2nd integral Yi
and r depend on t t ). We are now ready to consider the global effect of simultaneous
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observers in each panel. This leaves a system of algebraic equations which may be

• _t_ ps.l.,_ta_ a IllUIII_ItIUOA tnttSbnlUU aVl I, Illt_ sy_m _ u_ill_

formed with the aid of Mathematica.
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